Anal. Sminaire de Probabilits XIX. It also implies that \(\widehat{\mathcal {G}}\) satisfies the positive maximum principle as a linear operator on \(C_{0}(E_{0})\). An estimate based on a polynomial regression, with or without trimming, can be We now show that \(\tau=\infty\) and that \(X_{t}\) remains in \(E\) for all \(t\ge0\) and spends zero time in each of the sets \(\{p=0\}\), \(p\in{\mathcal {P}}\). Notice the cascade here, knowing x 0 = i p c a, we can solve for x 1 (we don't actually need x 0 to nd x 1 in the current case, but in general, we have a and such that the operator The least-squares method was published in 1805 by Legendreand in 1809 by Gauss. satisfies $$, \(h_{ij}(x)=-\alpha_{ij}x_{i}+(1-{\mathbf{1}}^{\top}x)\gamma_{ij}\), $$ a_{ii}(x) = -\alpha_{ii}x_{i}^{2} + x_{i}(\phi_{i} + \psi_{(i)}^{\top}x) + (1-{\mathbf{1}} ^{\top}x) g_{ii}(x) $$, \(a(x){\mathbf{1}}=(1-{\mathbf{1}}^{\top}x)f(x)\), \(f_{i}\in{\mathrm {Pol}}_{1}({\mathbb {R}}^{d})\), $$ \begin{aligned} x_{i}\bigg( -\sum_{j=1}^{d} \alpha_{ij}x_{j} + \phi_{i} + \psi_{(i)}^{\top}x\bigg) &= (1 - {\mathbf{1}}^{\top}x)\big(f_{i}(x) - g_{ii}(x)\big) \\ &= (1 - {\mathbf{1}}^{\top}x)\big(\eta_{i} + ({\mathrm {H}}x)_{i}\big) \end{aligned} $$, \({\mathrm {H}} \in{\mathbb {R}}^{d\times d}\), \(x_{i}\phi_{i} = \lim_{s\to0} s^{-1}\eta_{i} + ({\mathrm {H}}x)_{i}\), $$ x_{i}\bigg(- \sum_{j=1}^{d} \alpha_{ij}x_{j} + \psi_{(i)}^{\top}x + \phi _{i} {\mathbf{1}} ^{\top}x\bigg) = 0 $$, \(x_{i} \sum_{j\ne i} (-\alpha _{ij}+\psi _{(i),j}+\alpha_{ii})x_{j} = 0\), \(\psi _{(i),j}=\alpha_{ij}-\alpha_{ii}\), $$ a_{ii}(x) = -\alpha_{ii}x_{i}^{2} + x_{i}\bigg(\alpha_{ii} + \sum_{j\ne i}(\alpha_{ij}-\alpha_{ii})x_{j}\bigg) = \alpha_{ii}x_{i}(1-{\mathbf {1}}^{\top}x) + \sum_{j\ne i}\alpha_{ij}x_{i}x_{j} $$, $$ a_{ii}(x) = x_{i} \sum_{j\ne i}\alpha_{ij}x_{j} = x_{i}\bigg(\alpha_{ik}s + \frac{1-s}{d-1}\sum_{j\ne i,k}\alpha_{ij}\bigg). \(X\) polynomial is by default set to 3, this setting was used for the radial basis function as well. Exponents and polynomials are used for this analysis. arXiv:1411.6229, Lord, R., Koekkoek, R., van Dijk, D.: A comparison of biased simulation schemes for stochastic volatility models. Assume for contradiction that \({\mathbb {P}} [\mu_{0}<0]>0\), and define \(\tau=\inf\{t\ge0:\mu_{t}\ge0\}\wedge1\). These quantities depend on\(x\) in a possibly discontinuous way. \end{aligned}$$, $$ \mathrm{Law}(Y^{1},Z^{1}) = \mathrm{Law}(Y,Z) = \mathrm{Law}(Y,Z') = \mathrm{Law}(Y^{2},Z^{2}), $$, $$ \|b_{Z}(y,z) - b_{Z}(y',z')\| + \| \sigma_{Z}(y,z) - \sigma_{Z}(y',z') \| \le \kappa\|z-z'\|. 121, 20722086 (2011), Mazet, O.: Classification des semi-groupes de diffusion sur associs une famille de polynmes orthogonaux. It follows from the definition that \(S\subseteq{\mathcal {I}}({\mathcal {V}}(S))\) for any set \(S\) of polynomials. North-Holland, Amsterdam (1981), Kleiber, C., Stoyanov, J.: Multivariate distributions and the moment problem. For any symmetric matrix Sending \(n\) to infinity and applying Fatous lemma concludes the proof, upon setting \(c_{1}=4c_{2}\kappa\mathrm{e}^{4c_{2}^{2}\kappa}\wedge c_{2}\). Next, since \(\widehat{\mathcal {G}}p= {\mathcal {G}}p\) on \(E\), the hypothesis (A1) implies that \(\widehat{\mathcal {G}}p>0\) on a neighborhood \(U_{p}\) of \(E\cap\{ p=0\}\). $$, \([\nabla q_{1}(x) \cdots \nabla q_{m}(x)]^{\top}\), $$ c(x) = - \frac{1}{2} \begin{pmatrix} \nabla q_{1}(x)^{\top}\\ \vdots\\ \nabla q_{m}(x)^{\top}\end{pmatrix} ^{-1} \begin{pmatrix} \operatorname{Tr}((\widehat{a}(x)- a(x)) \nabla^{2} q_{1}(x) ) \\ \vdots\\ \operatorname{Tr}((\widehat{a}(x)- a(x)) \nabla^{2} q_{m}(x) ) \end{pmatrix}, $$, $$ \widehat{\mathcal {G}}f = \frac{1}{2}\operatorname{Tr}( \widehat{a} \nabla^{2} f) + \widehat{b} ^{\top} \nabla f. $$, $$ \widehat{\mathcal {G}}q = {\mathcal {G}}q + \frac{1}{2}\operatorname {Tr}\big( (\widehat{a}- a) \nabla ^{2} q \big) + c^{\top}\nabla q = 0 $$, $$ E_{0} = M \cap\{\|\widehat{b}-b\|< 1\}. Polynomials are easier to work with if you express them in their simplest form. Although, it may seem that they are the same, but they aren't the same. \(\mu\) \(y\in E_{Y}\). $$, \(\tau=\inf\{t\ge0:\mu_{t}\ge0\}\wedge1\), \(0\le{\mathbb {E}}[Z_{\tau}] = {\mathbb {E}}[\int_{0}^{\tau}\mu_{s}{\,\mathrm{d}} s]<0\), \({\mathrm{d}}{\mathbb {Q}}={\mathcal {E}}(-\phi B)_{1}{\,\mathrm{d}} {\mathbb {P}}\), $$ Z_{t}=\int_{0}^{t}(\mu_{s}-\phi\nu_{s}){\,\mathrm{d}} s+\int_{0}^{t}\nu_{s}{\,\mathrm{d}} B^{\mathbb {Q}}_{s}. Lecture Notes in Mathematics, vol. , Note that \(E\subseteq E_{0}\) since \(\widehat{b}=b\) on \(E\). Finance. J. are all polynomial-based equations. Hence by Lemma5.4, \(\beta^{\top}{\mathbf{1}}+ x^{\top}B^{\top}{\mathbf{1}} =\kappa(1-{\mathbf{1}}^{\top}x)\) for all \(x\in{\mathbb {R}}^{d}\) and some constant \(\kappa\). We now change time via, and define \(Z_{u} = Y_{A_{u}}\). Let Stoch. The site points out that one common use of polynomials in everyday life is figuring out how much gas can be put in a car. Indeed, the known formulas for the moments of the lognormal distribution imply that for each \(T\ge0\), there is a constant \(c=c(T)\) such that \({\mathbb {E}}[(Y_{t}-Y_{s})^{4}] \le c(t-s)^{2}\) for all \(s\le t\le T, |t-s|\le1\), whence Kolmogorovs continuity lemma implies that \(Y\) has a continuous version; see Rogers and Williams [42, TheoremI.25.2]. \(\kappa>0\), and fix Start earning. By (C.1), the dispersion process \(\sigma^{Y}\) satisfies. They play an important role in a growing range of applications in finance, including financial market models for interest rates, credit risk, stochastic volatility, commodities and electricity. Then \(B^{\mathbb {Q}}_{t} = B_{t} + \phi t\) is a -Brownian motion on \([0,1]\), and we have. satisfies $$, \(\widehat{a}(x_{0})=\sum_{i} u_{i} u_{i}^{\top}\), $$ \operatorname{Tr}\bigg( \Big(\nabla^{2} f(x_{0}) - \sum_{q\in {\mathcal {Q}}} c_{q} \nabla^{2} q(x_{0})\Big) \widehat{a}(x_{0}) \bigg) \le0. $$, $$ {\mathbb {P}}_{z}[\tau_{0}>\varepsilon] = \int_{\varepsilon}^{\infty}\frac {1}{t\varGamma (\widehat{\nu})}\left(\frac{z}{2t}\right)^{\widehat{\nu}} \mathrm{e}^{-z/(2t)}{\,\mathrm{d}} t, $$, \({\mathbb {P}}_{z}[\tau _{0}>\varepsilon]=\frac{1}{\varGamma(\widehat{\nu})}\int _{0}^{z/(2\varepsilon )}s^{\widehat{\nu}-1}\mathrm{e}^{-s}{\,\mathrm{d}} s\), $$ 0 \le2 {\mathcal {G}}p({\overline{x}}) < h({\overline{x}})^{\top}\nabla p({\overline{x}}). Positive semidefiniteness requires \(a_{jj}(x)\ge0\) for all \(x\in E\). Let a straight line. Accounting To figure out the exact pay of an employee that works forty hours and does twenty hours of overtime, you could use a polynomial such as this: 40h+20 (h+1/2h) Share Cite Follow answered Oct 22, 2012 at 1:38 ILoveMath 10.3k 8 47 110 Electron. A matrix \(A\) is called strictly diagonally dominant if \(|A_{ii}|>\sum_{j\ne i}|A_{ij}|\) for all \(i\); see Horn and Johnson [30, Definition6.1.9]. \(Z\ge0\) Applying the result we have already proved to the process \((Z_{\rho+t}{\boldsymbol{1}_{\{\rho<\infty\}}})_{t\ge0}\) with filtration \(({\mathcal {F}} _{\rho+t}\cap\{\rho<\infty\})_{t\ge0}\) then yields \(\mu_{\rho}\ge0\) and \(\nu_{\rho}=0\) on \(\{\rho<\infty\}\). Appl. Module 1: Functions and Graphs. Using that \(Z^{-}=0\) on \(\{\rho=\infty\}\) as well as dominated convergence, we obtain, Here \(Z_{\tau}\) is well defined on \(\{\rho<\infty\}\) since \(\tau <\infty\) on this set. Anal. If there are real numbers denoted by a, then function with one variable and of degree n can be written as: f (x) = a0xn + a1xn-1 + a2xn-2 + .. + an-2x2 + an-1x + an Solving Polynomials satisfies a square-root growth condition, for some constant By symmetry of \(a(x)\), we get, Thus \(h_{ij}=0\) on \(M\cap\{x_{i}=0\}\cap\{x_{j}\ne0\}\), and, by continuity, on \(M\cap\{x_{i}=0\}\). be a maximizer of 9, 191209 (2002), Dummit, D.S., Foote, R.M. Used everywhere in engineering. For example: x 2 + 3x 2 = 4x 2, but x + x 2 cannot be written in a simpler form. \(\widehat{\mathcal {G}}\) One readily checks that we have \(\dim{\mathcal {X}}=\dim{\mathcal {Y}}=d^{2}(d+1)/2\). Now define stopping times \(\rho_{n}=\inf\{t\ge0: |A_{t}|+p(X_{t}) \ge n\}\) and note that \(\rho_{n}\to\infty\) since neither \(A\) nor \(X\) explodes. Probably the most important application of Taylor series is to use their partial sums to approximate functions . To explain what I mean by polynomial arithmetic modulo the irreduciable polynomial, when an algebraic . 2. : A remark on the multidimensional moment problem. But an affine change of coordinates shows that this is equivalent to the same statement for \((x_{1},x_{2})\), which is well known to be true. The theorem is proved. Let \((W^{i},Y^{i},Z^{i})\), \(i=1,2\), be \(E\)-valued weak solutions to (4.1), (4.2) starting from \((y_{0},z_{0})\in E\subseteq{\mathbb {R}}^{m}\times{\mathbb {R}}^{n}\). \(\tau _{0}=\inf\{t\ge0:Z_{t}=0\}\) \(Z_{0}\ge0\), \(\mu\) In: Azma, J., et al. In particular, if \(i\in I\), then \(b_{i}(x)\) cannot depend on \(x_{J}\). To prove that \(c\in{\mathcal {C}}^{Q}_{+}\), it only remains to show that \(c(x)\) is positive semidefinite for all \(x\). Let \(\vec{p}\in{\mathbb {R}}^{{N}}\) be the coordinate representation of\(p\). \(Z\) at level zero. We first prove an auxiliary lemma. Nonetheless, its sign changes infinitely often on any time interval \([0,t)\) since it is a time-changed Brownian motion viewed under an equivalent measure. (15)], we have, where \(\varGamma(\cdot)\) is the Gamma function and \(\widehat{\nu}=1-\alpha /2\in(0,1)\). $$, \(\frac{\partial^{2} f(y)}{\partial y_{i}\partial y_{j}}\), $$ \mu^{Z}_{t} \le m\qquad\text{and}\qquad\| \sigma^{Z}_{t} \|\le\rho, $$, $$ {\mathbb {E}}\left[\varPhi(Z_{T})\right] \le{\mathbb {E}}\left[\varPhi (V)\right] $$, \({\mathbb {E}}[\mathrm{e} ^{\varepsilon' V^{2}}] <\infty\), \(\varPhi (z) = \mathrm{e}^{\varepsilon' z^{2}}\), \({\mathbb {E}}[ \mathrm{e}^{\varepsilon' Z_{T}^{2}}]<\infty\), \({\mathbb {E}}[ \mathrm{e}^{\varepsilon' \| Y_{T}\|}]<\infty\), $$ {\mathrm{d}} Y_{t} = \widehat{b}_{Y}(Y_{t}) {\,\mathrm{d}} t + \widehat{\sigma}_{Y}(Y_{t}) {\,\mathrm{d}} W_{t}, $$, \(\widehat{b}_{Y}(y)=b_{Y}(y){\mathbf{1}}_{E_{Y}}(y)\), \(\widehat{\sigma}_{Y}(y)=\sigma_{Y}(y){\mathbf{1}}_{E_{Y}}(y)\), \({\mathrm{d}} Y_{t} = \widehat{b}_{Y}(Y_{t}) {\,\mathrm{d}} t + \widehat{\sigma}_{Y}(Y_{t}) {\,\mathrm{d}} W_{t}\), \((y_{0},z_{0})\in E\subseteq{\mathbb {R}}^{m}\times{\mathbb {R}}^{n}\), \(C({\mathbb {R}}_{+},{\mathbb {R}}^{d}\times{\mathbb {R}}^{m}\times{\mathbb {R}}^{n}\times{\mathbb {R}}^{n})\), $$ \overline{\mathbb {P}}({\mathrm{d}} w,{\,\mathrm{d}} y,{\,\mathrm{d}} z,{\,\mathrm{d}} z') = \pi({\mathrm{d}} w, {\,\mathrm{d}} y)Q^{1}({\mathrm{d}} z; w,y)Q^{2}({\mathrm{d}} z'; w,y). A standard argument based on the BDG inequalities and Jensens inequality (see Rogers and Williams [42, CorollaryV.11.7]) together with Gronwalls inequality yields \(\overline{\mathbb {P}}[Z'=Z]=1\). Also, the business owner needs to calculate the lowest price at which an item can be sold to still cover the expenses. Defining \(\sigma_{n}=\inf\{t:\|X_{t}\|\ge n\}\), this yields, Since \(\sigma_{n}\to\infty\) due to the fact that \(X\) does not explode, we have \(V_{t}<\infty\) for all \(t\ge0\) as claimed. Process. \(Y_{t} = Y_{0} + \int_{0}^{t} b(Y_{s}){\,\mathrm{d}} s + \int_{0}^{t} \sigma(Y_{s}){\,\mathrm{d}} W_{s}\). 29, 483493 (1976), Ethier, S.N., Kurtz, T.G. Find the dimensions of the pool. . where This is done throughout the proof. denote its law. $$, \(t\mapsto{\mathbb {E}}[f(X_{t\wedge \tau_{m}})\,|\,{\mathcal {F}}_{0}]\), \(\int_{0}^{t\wedge\tau_{m}}\nabla f(X_{s})^{\top}\sigma(X_{s}){\,\mathrm{d}} W_{s}\), $$\begin{aligned} {\mathbb {E}}[f(X_{t\wedge\tau_{m}})\,|\,{\mathcal {F}}_{0}] &= f(X_{0}) + {\mathbb {E}}\left[\int_{0}^{t\wedge\tau_{m}}{\mathcal {G}}f(X_{s}) {\,\mathrm{d}} s\,\bigg|\, {\mathcal {F}}_{0} \right] \\ &\le f(X_{0}) + C {\mathbb {E}}\left[\int_{0}^{t\wedge\tau_{m}} f(X_{s}) {\,\mathrm{d}} s\,\bigg|\, {\mathcal {F}}_{0} \right] \\ &\le f(X_{0}) + C\int_{0}^{t}{\mathbb {E}}[ f(X_{s\wedge\tau_{m}})\,|\, {\mathcal {F}}_{0} ] {\,\mathrm{d}} s. \end{aligned}$$, \({\mathbb {E}}[f(X_{t\wedge\tau_{m}})\, |\,{\mathcal {F}} _{0}]\le f(X_{0}) \mathrm{e}^{Ct}\), $$ p(X_{u}) = p(X_{t}) + \int_{t}^{u} {\mathcal {G}}p(X_{s}) {\,\mathrm{d}} s + \int_{t}^{u} \nabla p(X_{s})^{\top}\sigma(X_{s}){\,\mathrm{d}} W_{s}. \(\mu\ge0\) In view of (C.4) and the above expressions for \(\nabla f(y)\) and \(\frac{\partial^{2} f(y)}{\partial y_{i}\partial y_{j}}\), these are bounded, for some constants \(m\) and \(\rho\). and Economist Careers. In conjunction with LemmaE.1, this yields. . Since \(h^{\top}\nabla p(X_{t})>0\) on \([0,\tau(U))\), the process \(A\) is strictly increasing there. Another application of (G2) and counting degrees gives \(h_{ij}(x)=-\alpha_{ij}x_{i}+(1-{\mathbf{1}}^{\top}x)\gamma_{ij}\) for some constants \(\alpha_{ij}\) and \(\gamma_{ij}\). If \(d\ge2\), then \(p(x)=1-x^{\top}Qx\) is irreducible and changes sign, so (G2) follows from Lemma5.4. \(A=S\varLambda S^{\top}\), we have , We may now complete the proof of Theorem5.7(iii). For geometric Brownian motion, there is a more fundamental reason to expect that uniqueness cannot be proved via the moment problem: it is well known that the lognormal distribution is not determined by its moments; see Heyde [29]. Like actuaries, statisticians are also concerned with the data collection and analysis. given by. The proof of(ii) is complete. We now focus on the converse direction and assume(A0)(A2) hold. of Math. {\mathbb {E}}\bigg[\sup _{u\le s\wedge\tau_{n}}\!\|Y_{u}-Y_{0}\|^{2} \bigg]{\,\mathrm{d}} s, \end{aligned}$$, \({\mathbb {E}}[ \sup _{s\le t\wedge \tau_{n}}\|Y_{s}-Y_{0}\|^{2}] \le c_{3}t \mathrm{e}^{4c_{2}\kappa t}\), \(c_{3}=4c_{2}\kappa(1+{\mathbb {E}}[\|Y_{0}\|^{2}])\), \(c_{1}=4c_{2}\kappa\mathrm{e}^{4c_{2}^{2}\kappa}\wedge c_{2}\), $$ \lim_{z\to0}{\mathbb {P}}_{z}[\tau_{0}>\varepsilon] = 0. Polynomials can be used in financial planning. By the above, we have \(a_{ij}(x)=h_{ij}(x)x_{j}\) for some \(h_{ij}\in{\mathrm{Pol}}_{1}(E)\). Math. The reader is referred to Dummit and Foote [16, Chaps. 119, 4468 (2016), Article Then(3.1) and(3.2) in conjunction with the linearity of the expectation and integration operators yield, Fubinis theorem, justified by LemmaB.1, yields, where we define \(F(u) = {\mathbb {E}}[H(X_{u}) \,|\,{\mathcal {F}}_{t}]\). By well-known arguments, see for instance Rogers and Williams [42, LemmaV.10.1 and TheoremsV.10.4 and V.17.1], it follows that, By localization, we may assume that \(b_{Z}\) and \(\sigma_{Z}\) are Lipschitz in \(z\), uniformly in \(y\). Finance. Economists use data and mathematical models and statistical techniques to conduct research, prepare reports, formulate plans and interpret and forecast market trends. and Hence, by symmetry of \(a\), we get. Define an increasing process \(A_{t}=\int_{0}^{t}\frac{1}{4}h^{\top}\nabla p(X_{s}){\,\mathrm{d}} s\). \(\varepsilon>0\), By Ging-Jaeschke and Yor [26, Eq. 7 and 15] and Bochnak etal. To this end, consider the linear map \(T: {\mathcal {X}}\to{\mathcal {Y}}\) where, and \(TK\in{\mathcal {Y}}\) is given by \((TK)(x) = K(x)Qx\). We then have. It thus has a MoorePenrose inverse which is a continuous function of\(x\); see Penrose [39, page408]. The assumption of vanishing local time at zero in LemmaA.1(i) cannot be replaced by the zero volatility condition \(\nu =0\) on \(\{Z=0\}\), even if the strictly positive drift condition is retained. $$, $$ \operatorname{Tr}\bigg( \Big(\nabla^{2} f(x_{0}) - \sum_{q\in {\mathcal {Q}}} c_{q} \nabla^{2} q(x_{0})\Big) \gamma'(0) \gamma'(0)^{\top}\bigg) \le0. $$, $$\begin{aligned} Y_{t} &= y_{0} + \int_{0}^{t} b_{Y}(Y_{s}){\,\mathrm{d}} s + \int_{0}^{t} \sigma_{Y}(Y_{s}){\,\mathrm{d}} W_{s}, \\ Z_{t} &= z_{0} + \int_{0}^{t} b_{Z}(Y_{s},Z_{s}){\,\mathrm{d}} s + \int_{0}^{t} \sigma _{Z}(Y_{s},Z_{s}){\,\mathrm{d}} W_{s}, \\ Z'_{t} &= z_{0} + \int_{0}^{t} b_{Z}(Y_{s},Z'_{s}){\,\mathrm{d}} s + \int_{0}^{t} \sigma _{Z}(Y_{s},Z'_{s}){\,\mathrm{d}} W_{s}. Stoch. Financial polynomials are really important because it is an easy way for you to figure out how much you need to be able to plan a trip, retirement, or a college fund. and with J. Multivar. Given any set of polynomials \(S\), its zero set is the set. \end{aligned}$$, $$ {\mathbb {E}}\left[ Z^{-}_{\tau}{\boldsymbol{1}_{\{\rho< \infty\}}}\right] = {\mathbb {E}}\left[ - \int _{0}^{\tau}{\boldsymbol{1}_{\{Z_{s}\le0\}}}\mu_{s}{\,\mathrm{d}} s {\boldsymbol{1}_{\{\rho < \infty\}}}\right]. Stochastic Processes in Mathematical Physics and Engineering, pp. Then, for all \(t<\tau\). Hence. Math. Changing variables to \(s=z/(2t)\) yields \({\mathbb {P}}_{z}[\tau _{0}>\varepsilon]=\frac{1}{\varGamma(\widehat{\nu})}\int _{0}^{z/(2\varepsilon )}s^{\widehat{\nu}-1}\mathrm{e}^{-s}{\,\mathrm{d}} s\), which converges to zero as \(z\to0\) by dominated convergence. J. Financ. Ann. It is well known that a BESQ\((\alpha)\) process hits zero if and only if \(\alpha<2\); see Revuz and Yor [41, page442]. There exists a continuous map $$, \(\widehat{a}=\widehat{\sigma}\widehat{\sigma}^{\top}\), \(\pi:{\mathbb {S}}^{d}\to{\mathbb {S}}^{d}_{+}\), \(\lambda:{\mathbb {S}}^{d}\to{\mathbb {R}}^{d}\), $$ \|A-S\varLambda^{+}S^{\top}\| = \|\lambda(A)-\lambda(A)^{+}\| \le\|\lambda (A)-\lambda(B)\| \le\|A-B\|. Sci. \(Z\) This relies on (G2) and(A1). Available online at http://ssrn.com/abstract=2782486, Akhiezer, N.I. A polynomial in one variable (i.e., a univariate polynomial) with constant coefficients is given by a_nx^n+.+a_2x^2+a_1x+a_0. Consequently \(\deg\alpha p \le\deg p\), implying that \(\alpha\) is constant. Thus (G2) holds.
Wedding Villas Alicante, Michael Aronow Horses, Workshop To Rent Surrey, Articles H